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1. Introduction

The phase diagram of QCD in the temperature — chemical potential plane is the subject of

many present investigations. Understanding the different phases and the transitions among

them has strong implications in cosmology, in astrophysics and in the phenomenology of

heavy ion collisions. Unfortunately, perturbation theory and approaches based on effective

models can handle a limited number of issues of the QCD phase diagram and, in fact, the

lattice formulation is the only tool for a quantitative approach to the problem based on

first principles. For non-zero chemical potential, however, the QCD fermion determinant

becomes complex and the probability interpretation of the QCD Euclidean action, neces-

sary for the standard Monte Carlo importance sampling, is lost, this being the well-known

“sign problem”.

Several methods have been invented to circumvent this problem (for a review, see [1]

and [2]): the reweighting from the ensemble at µ = 0 [3 – 6], the Taylor expansion

method [7 – 15], the canonical approach [16 – 19], the density of states method [20 – 26]

and the method of analytic continuation from an imaginary chemical potential [27 – 48].

Their application has allowed to get relevant information on the critical line separating the

hadronic phase from the quark-gluon plasma phase in the region µ/T . 1.

In this paper we focus our attention on the method of analytic continuation. The

idea behind this method is very simple: numerical simulations are performed at imaginary

chemical potential, µ = iµI , for which the fermion determinant is real, then Monte Carlo

determinations are interpolated by a suitable function and finally this function is analyt-

ically continued to real values of µ. This method is rather powerful since the coupling β

and the chemical potential µ can be varied independently and there is no limitation from

increasing lattice size, as happens with other methods, like those based on reweighting.

There is, however, an important drawback: the periodicity of the QCD partition function
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and the presence of non-analyticities arising for imaginary values of the chemical poten-

tial [49] restrict the region useful for numerical determinations to the strip 0 ≤ µI/T < π/3,

or even less in presence of “physical” phase transitions. This implies that the accuracy in

the interpolation of the results at imaginary chemical potential has a strong impact on

the extension of the domain of real µ values reachable after analytic continuation. In that

sense it is very important to answer the question about which is the optimal way to extract

information from data at imaginary chemical potential, i.e. which is the best choice for the

interpolating function, which only in a some cases can be guided by physical intuition,

leading to some particular prediction for the behaviour at real µ. Moreover one should

always be careful about the actual ranges of applicability of the method, which can be

influenced by the various physical and unphysical transitions present in the QCD phase

diagram, leading to possible non-analyticities.

So far, the method of analytic continuation has been applied in SU(3) with nf =

2 [29, 30], nf = 3 [31, 32] and nf = 4 [33 – 35, 43]. Moreover, it has been tested in several

theories which do not suffer from the sign problem, by direct comparison of the analytic

continuation with Monte Carlo results obtained at real µ [28, 36, 37, 44]. In most of these

applications, a truncated Taylor series (or, more simply, a polynomial) has been used as

interpolating function, sometimes a Fourier sum for the low temperature region [33, 34].

The aim of this paper is to study limitations and possible improvements of the method

of analytic continuation, by considering its application to SU(2) or two-color QCD. This

theory is free from the sign problem and Monte Carlo numerical simulations at real values

of the chemical potential are feasible. This allows to compare the extrapolations from

imaginary to real chemical potential with direct determinations allowing at the same time

both to discriminate among different Ansätze for the interpolating functions and to directly

test the range of reliability of the method itself. The experience gained in this way can

then be hopefully used as a guide in applications to the real theory.

The paper is organized as follows: in section 2, we briefly recall some general properties

of the phase diagram of SU(N) gauge theories in the temperature - imaginary chemical

potential plane and discuss their implications on the method of analytic continuation;

in section 3, we present our numerical results and discuss both the choice of the best

interpolating function, showing that functions different from polynomials can considerably

improve the method, and the ranges where analytic continuation is reliable; finally, in

section 4, we draw our conclusions.

2. Theoretical background

Long ago Roberge and Weiss (RW) have shown [49] that the partition function of any

SU(N) gauge theory with non-zero temperature and imaginary chemical potential, µ = iµI ,

is periodic in θ ≡ µI/T with period 2π/N and that the free energy F is a regular function

of θ for T < TE , while it is discontinuous at θ = 2π(k+1/2)/N , k = 0, 1, 2, . . ., for T > TE ,

where TE is a characteristic temperature, depending on the theory. The resulting phase

diagram in the (T, θ)-plane is given in figure 1 (left), where the vertical lines represent first

order transition lines. This structure is compatible with the µ → −µ symmetry, related
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Figure 1: (Left) Phase diagram in the (T, θ) plane according to ref. [49]. (Right) Tentative phase

diagram in the (T, θ) plane after the inclusion of the chiral critical lines.
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Figure 2: Phase diagram in the (β, µ̂I)-plane; N is the number of colors, Nτ the extension of the

lattice in the temporal direction. The numerical values for βE and βc are valid for SU(2) in presence

of nf = 8 degenerate staggered fermions with mass am = 0.07.

with CP invariance, and with the Roberge-Weiss periodicity. The µI-dependence of any

observable is completely determined if this observable is known in the strip 0 ≤ θ < π/N .

It may be useful to recall the two steps in the proof of periodicity in SU(N): first, the

phase transformation

ψ(~x, τ) −→ exp(iτµI)ψ(~x, τ) , (2.1)

then a gauge transformation with periodicity up to an element of the center group Z(N),

i.e. a transformation with gauge group elements U(~x, τ) satisfying the boundary condition

U(~x, aNτ ) = exp(2πik/N)U(~x, 0) , k integer , (2.2)

where Nτ is the lattice size in the temporal direction and a is the lattice spacing. The RW

periodicity of the partition function extends to the observables which are left unchanged
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Figure 3: Negative side of the horizontal axis:

imaginary part of the fermionic number den-

sity vs. the imaginary chemical potential at

β = 1.90. Positive side of the horizontal axis:

real part of the fermionic number density vs. the

real chemical potential at β = 1.90. The green

(blue) solid line represents the polynomial (ra-

tio of polynomials) interpolating function; the

dashed lines give the corresponding uncertainty,

coming from the errors in the parameters of the

fit.
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Figure 4: Chiral condensate vs. µ2 at β =

1.90. The green (blue) solid line represents the

polynomial (ratio of polynomials) interpolating

function; the dashed lines give the correspond-

ing uncertainty, coming from the errors in the

parameters of the fit.

by these two transformations. This is certainly the case of the chiral condensate 〈ψ̄ψ〉.

The Polyakov loop L ≡
∏

τ=1,Nτ
U(~x, aτ), instead, takes the factor exp(2πik/N) under

the transformation (2.2), which implies that 〈L〉 moves, continuously or discontinuously

according to the temperature, from one Z(N) sector to the other when µI passes from one

RW sector to the next. As a consequence, the chiral condensate has the same periodicity

in µI/T of the partition function, 2π/N , while 〈L〉 has periodicity in µI/T equal to 2π.

These predictions have been confirmed numerically in several cases [29, 30, 33 – 37].

A phase diagram like that in figure 1 (left) would imply the absence of any transition

along the T axis in the physical regime of zero chemical potential for any value of N ,

nf and the quark masses, which cannot be true. Therefore, it is necessary to admit that

the phase diagram in the (T, θ)-plane is more complicated than in figure 1 (left). The

simplest possibility is given in figure 1 (right), where the added lines generally represent

transitions which can be first order, second order or crossover, and can be considered as

the continuation of the physical critical line taking place for real chemical potentials. The

temperature Tc is the critical or pseudo-critical one for the transition at zero chemical

potential. The temperature TE represents the endpoint of the RW transition lines: the

fact that the continuation of the physical critical line ends right on TE is not expected a

priori, but is the result of numerical investigations [29, 30, 33 – 35].

It is convenient to redraw the phase diagram of figure 1 (right) in the (β, µ̂I)-plane

(figure 2), where β = 2N/g2, µ̂I ≡ aµI is the imaginary chemical potential in lattice units
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Figure 5: As in figure 4 for the Polyakov loop.
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Figure 6: χ2/d.o.f. of the global fit to real

and imaginary chemical potential data for the

Polyakov loop at β = 1.90, for various fitting

functions, as the maximum value µmax of real

chemical potential taken into account is varied.

Lines connecting data point have been drawn to

guide the eye.

and it has been used the fact that T = 1/(aNτ ).

Given this phase diagram, it is possible to distinguish three different regimes, corre-

sponding to different ranges of temperature (i.e. of β), where analytic continuation can

apply differently.

Regime a: T > TE (or β > βE).

This regime corresponds to temperatures for which the only expected non-analyticity

at imaginary chemical potential is represented by the RW transition line. In this case the

useful interval in µ̂I for numerical simulations is [0, π/8]. On the side of the real chemical

potential, no transition line is expected. This situation is, in some sense, the best possible

for the application of the method of analytic continuation. Simulations at imaginary µ can

be done on a relatively large interval and, if the optimal interpolating function is found,

its continuation should reproduce data for any real value of µ. The last expectation could

actually be wrong if the critical behaviour induced by the RW line had some influence

on the ranges of analyticity for the partition function also for real values of the chemical

potential: this is an important point that can be directly checked in two-color QCD.

Regime b: Tc < T < TE (or βc < β < βE).

This regime corresponds to temperatures for which a non-analyticity is expected at a

µ̂I value smaller than π/8. On the side of the real chemical potential, no transition line

is expected. This situation is similar to the previous, with the important difference that

the useful interval in µ̂I for numerical simulations is restricted and the critical behaviour

induced by the transition line may be different, thus making in practice more difficult to

find the optimal interpolation.

Regime c: T < Tc (or β < βc).
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Figure 7: As in figure 3 for β = 1.45.
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Figure 8: As in figure 4 for β = 1.45.

This regime corresponds to temperatures for which no non-analyticities should be met

in µ̂I . This implies that µ̂I can be varied at will, although no additional information for the

observables of interest here can be gotten by going farther than µ̂I = π/4, owing to the RW

periodicity. This regime of temperatures is probably the most interesting for physics, since

a transition is expected here for a certain real value of the chemical potential. This implies

that, no matter how good is the interpolation of data at imaginary chemical potential, its

continuation to real µ should fail to reproduce data above a certain value.

3. Numerical results

We have performed numerical simulations on a 163 × 4 lattice of the SU(2) gauge theory

with nf = 8 degenerate staggered fermions having mass am = 0.07. For this theory

the tentative phase diagram looks like in figure 2, with βE ' 1.55 [36, 37] and βc '

1.41 [50]. The algorithm adopted has been the usual exact φ algorithm described in ref. [51],

properly modified for the inclusion of a finite chemical potential by multiplying the forward

(backward) temporal part of the Dirac matrix by eµ̂ (e−µ̂), for the case of a real chemical

potential, and by eiµ̂I (e−iµ̂I ) for the case of an imaginary chemical potential. In particular

that implies, for real chemical potentials, the impossibility of exploiting the usual even-odd

factorization trick for reducing the number of flavors from 8 to 4. The choice of 8 flavors

is therefore linked to the need of using an exact Hybrid Monte Carlo algorithm: the last is

an unavoidable requirement if we want to make a detailed comparison of data at imaginary

values of µ with data at real values of µ, since systematic effects due to an inexact algorithm

could be different for the two cases. The choice of a large volume is instead essential if

we want to make a careful test of the method of analytic continuation, since possible non-

analyticities will show up only in the thermodynamic limit. The observables we determined

are the Polyakov loop, the chiral condensate and the fermionic number density 〈nq〉.

We have considered three β values, β=1.90, 1.45 and 1.30, corresponding to the three

different regimes exposed in section 2, and for each we have taken measurements for several

values of the chemical potential, both imaginary and real. The summary of numerical
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Figure 9: As in figure 5 for β = 1.45.
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Figure 10: As in figure 6 for β = 1.45.

simulations is given in tables 1, 2, 3, 4, 5, 6. Simulations have been performed on the

APE100 and APEmille crates in Bari and on the recently installed computer facilities at

the INFN apeNEXT Computing Center in Rome. Statistics have been chosen so as to have

statistical errors well below 1% in most cases: indeed our ability to discern the best among

a set of possible interpolating functions as well as to detect the exact ranges beyond which

analytic continuation fails, is strictly related to the statistical precision of our data.

We have chosen two different strategies for our analysis. We have used the data at

imaginary chemical potential µI to determine the parameters of the interpolating function,

then we have analytically continued this function to real values of the chemical potential

and compared there with direct Monte Carlo determinations. In this way we are able to

test how the method of analytic continuation is able to reproduce the correct physical

results for real values of µ, and to understand which is the best suited function to do so.

As an alternative way to analyze our results, we have tried to fit both sets of data

together, at imaginary and real chemical potential, with several analytic functions and

using variable ranges for both µ̂ and µ̂I . In this way, using the χ2 test as a statistical tool,

we are able to understand in which ranges, if any, the method of analytic continuation makes

any sense at all, at least within the set of analytic functions taken into considerations.

In order to fulfill CP invariance, the interpolating function must be a even function

of µ for observables, such as the Polyakov loop and the chiral condensate, which do not

depend explicitly on µ. The fermionic number density, being the logarithmic derivative of

the partition function with respect to the chemical potential, is instead an odd function of

µ.

We separate the discussion of our results for the three different regimes, reflecting the

different strategies followed in searching for the optimal interpolation and the different

behaviors observed for the physical observables.

3.1 The high temperature region β > βE

For this region we have used two kinds of interpolating functions for the data at imaginary

µ: polynomials and ratio of polynomials, the last choice being related to the use of Padé

approximants suggested in ref. [45]. For the Polyakov loop and the chiral condensate we

– 7 –



J
H
E
P
0
2
(
2
0
0
7
)
0
6
6

-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4
µ̂I (left), µ̂ (right)

0.0

0.2

0.4

0.6

0.8

1.0
Im

(q
ua

rk
 d

en
si

ty
) 

(l
ef

t)
; 

qu
ar

k 
de

ns
it

y 
(r

ig
ht

)

A*sin(8µ̂I)+B*sin(16µ̂I)

11th order odd polynomial in µ̂I

β=1.30

Figure 11: Negative side of the horizontal axis:

imaginary part of the fermionic number den-

sity vs. the imaginary chemical potential at

β = 1.30. Positive side of the horizontal axis:

real part of the fermionic number density vs. the

real chemical potential at β = 1.30. The green

(blue) solid line represents the Fourier (poly-

nomial) interpolating function and its continu-

ation; the dashed lines give the corresponding

uncertainty, coming from the errors in the pa-

rameters of the fit.
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Figure 12: Chiral condensate vs. µ2 at β =

1.30. The green (blue) solid line represents the

Fourier (polynomial) interpolating function and

its continuation; the dashed lines give the cor-

responding uncertainty, coming from the errors

in the parameters of the fit.

have considered a second order polynomial in µ2,

A + Bµ̂2
I + Cµ̂4

I , (3.1)

according to the standard approach, and the ratio of two first order polynomials in µ2,

A + Bµ̂2
I

1 + Cµ̂2
I

, (3.2)

according to our new proposal. Similarly, for the fermionic number density we have used

a polynomial of the form

Aµ̂I + Bµ̂3
I + Cµ̂5

I , (3.3)

and the ratio
Aµ̂I + Bµ̂3

I

1 + Cµ̂2
I

. (3.4)

Our findings at β = 1.90 are summarized in figures 3, 4, 5 and table 7. In figure 3 we

put on the same plot the imaginary part of the fermionic number density as a function of

µI and the real part of the fermionic number density as a function of the real µ. The two

data sets match smoothly at µ = 0, which is a necessary condition for the applicability

of the method of analytic continuation. The fermionic density approaches two for large

values of the real chemical potential. This saturation effect is a lattice artifact, which is due

to the fact that no more than two fermions per site can be accommodated on the lattice
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Figure 14: χ2/d.o.f. of the global fit to real

and imaginary chemical potential data for the

various observable at β = 1.30, as a function

of the maximum value µmax of real chemical

potential taken into account. Fitting functions

are the same used for figures 11, 12, 13 and re-

ported in eq. (3.5), (3.6) and (3.7). The values

of χ2/d.o.f. are quite stable around one for all

observables, till µ̂max crosses the pseudo-critical

point.

(“Pauli blocking”), and manifests itself for values of the chemical potential which are close

to the ultraviolet cutoff, i.e. for µ̂ of order 1 (see refs. [52, 53] for a recent discussion of this

phenomenon). The solid lines represent the two kinds of interpolating functions, whose

parameters are determined by a fit on the data at imaginary chemical potential. Here both

interpolations, polynomial and rational function, nicely reproduce the data at real µ over a

large interval. Deviations start at values of µ for which the saturation effects are certainly

important.

In figure 4 we show the chiral condensate as a function of µ2. Again data at imaginary

µ, i.e. µ2 < 0, and data at real µ, i.e. µ2 > 0, nicely match at µ = 0. This time the

different behavior of the two kinds of interpolation clearly emerges. The ratio of first order

polynomials in µ2 reproduces the data at real µ on a much larger interval than the second

order polynomial in µ2. Deviations arise for values of real µ for which saturation effects

are probably already important. The same conclusions can be drawn from figure 5 which

shows data and interpolations for the Polyakov loop.

The above conclusions do not change if larger order terms are included in the poly-

nomial interpolation (3.1). In fact, larger order polynomials fail to reproduce the data at

real µ even earlier in µ than second order polynomials. This is due to the fact that the

higher order terms of the polynomial are the less accurately determined in the fit to data at

imaginary µ. On the other side, if in the ratio of polynomials the order of the polynomials

at the numerator and/or at the denominator is increased, no improvement is observed.

It is interesting to compare the parameters in the expansion (3.3) with those predicted

by the perturbation theory in µ/T of the fermionic density. In the infinite temperature
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µ̂R machine stat. 〈L〉 〈ψψ〉 <〈nq〉

0. APE100 1k 0.39712(28) 0.085768(65) 0.00048(21)

0.05 APEmille 1k 0.39867(26) 0.085421(55) 0.01907(23)

0.10 APEmille 1k 0.40123(25) 0.084650(66) 0.03878(23)

0.15 APEmille 5k 0.40559(13) 0.083352(25) 0.06030(14)

0.20 APEmille 5k 0.41159(16) 0.081532(37) 0.08413(13)

0.25 APEmille 5k 0.41876(14) 0.079271(28) 0.11133(18)

0.30 APEmille 5k 0.42731(15) 0.076431(45) 0.14280(11)

0.35 APEmille 5k 0.43669(13) 0.073201(33) 0.17937(12)

0.40 APEmille 5k 0.44649(12) 0.069646(34) 0.22207(11)

0.45 APEmille 5k 0.45687(17) 0.065784(43) 0.27166(14)

0.50 APEmille 5k 0.46675(13) 0.061474(42) 0.32895(21)

0.55 APEmille 5k 0.47620(11) 0.057068(67) 0.39490(20)

0.60 APEmille 5k 0.48516(10) 0.052518(59) 0.46992(16)

0.65 APEmille 5k 0.49244(11) 0.047807(53) 0.55385(14)

0.70 APEmille 5k 0.49809(14) 0.043017(47) 0.64675(16)

0.75 APEmille 5k 0.50144(12) 0.038366(53) 0.74778(17)

0.80 APEmille 5k 0.50207(11) 0.033650(54) 0.85613(18)

0.90 apeNEXT 7k 0.49331(10) 0.025022(29) 1.087610(89)

1.00 apeNEXT 7k 0.46667(11) 0.017377(20) 1.32517(11)

1.10 apeNEXT 7k 0.41818(17) 0.011103(28) 1.54686(20)

1.20 apeNEXT 7k 0.34646(23) 0.006400(17) 1.72969(18)

1.50 apeNEXT 7k 0.13191(24) 0.000750(12) 1.966760(93)

1.80 apeNEXT 7k 0.04066(33) 0.0000712(93) 1.996934(99)

2.10 apeNEXT 7k 0.01254(44) 0.0000033(79) 1.99972(10)

Table 1: Summary of the simulations at β = 1.90 and real chemical potential, µ̂ = µ̂R.

µ̂I machine stat. 〈L〉 〈ψψ〉 =〈nq〉

0. APE100 1k 0.39712(28) 0.085768(65) 0.00048(21)

0.05 APE100 1k 0.39636(27) 0.086028(39) −0.01896(27)

0.075 apeNEXT 5k 0.39525(17) 0.086394(21) −0.027905(55)

0.10 APE100 1k 0.39323(31) 0.086856(43) −0.03638(21)

0.125 apeNEXT 5k 0.39133(24) 0.087473(34) −0.045120(54)

0.15 APE100 1k 0.38855(26) 0.088213(42) −0.05262(25)

0.175 apeNEXT 5k 0.38518(18) 0.089108(21) −0.060482(45)

0.20 APE100 1k 0.38159(28) 0.090086(51) −0.06709(25)

0.225 apeNEXT 5k 0.37717(16) 0.091346(27) −0.073076(60)

0.25 APE100 1k 0.37185(28) 0.092688(62) −0.07808(22)

0.275 apeNEXT 5k 0.36596(23) 0.094159(40) −0.082205(66)

0.30 APE100 5k 0.35986(45) 0.095916(28) −0.08535(12)

0.325 apeNEXT 5k 0.35893(23) 0.097733(27) −0.087182(62)

0.35 APE100 1k 0.34173(44) 0.099686(59) −0.08787(23)

0.375 apeNEXT 5k 0.32987(70) 0.101984(48) −0.08732(16)

0.40 APE100 1k −0.32419(49) 0.103085(88) 0.08697(26)

Table 2: Summary of the simulations at β = 1.90 and imaginary chemical potential, µ̂ = iµ̂I .

limit, and taking into account the rotation to real chemical potential in eq. (3.3), it should

be A = −nf/N2
τ = −1/2 and B = nf/π2 = 8/π2 = 0.810569 . . . [13]. These values are in

rough agreement with our findings at the largest available β (see table 7).

We now expose the results of our combined fits using both sets of data at imaginary
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µ̂R machine stat. 〈L〉 〈ψψ〉 <〈nq〉

0. apeNEXT 5k 0.25078(62) 0.20791(43) −0.000013(73)

0. APEmille 5k 0.25058(40) 0.20786(34) 0.00012(22)

0.05 APEmille 5k 0.25389(30) 0.20473(33) 0.01889(16)

0.10 APEmille 5k 0.26164(27) 0.19773(32) 0.03894(17)

0.15 APEmille 5k 0.27373(46) 0.18706(44) 0.06358(16)

0.20 APEmille 5k 0.28786(29) 0.17435(38) 0.09185(18)

0.25 APEmille 5k 0.30307(27) 0.16074(20) 0.12650(18)

0.30 APEmille 5k 0.31919(17) 0.14730(13) 0.16839(26)

0.35 APEmille 5k 0.33446(18) 0.13388(11) 0.21787(18)

0.40 APEmille 5k 0.34964(16) 0.120640(87) 0.27646(19)

0.45 APEmille 5k 0.36357(17) 0.10762(11) 0.34454(20)

0.50 APEmille 5k 0.37576(15) 0.09535(10) 0.42341(25)

0.55 APEmille 5k 0.38624(11) 0.083452(87) 0.51294(23)

0.60 APEmille 5k 0.39362(14) 0.07217(12) 0.61217(29)

0.65 APEmille 5k 0.39781(14) 0.06176(11) 0.72067(24)

0.70 apeNEXT 5k 0.39851(14) 0.052110(38) 0.83731(15)

0.75 apeNEXT 5k 0.39481(16) 0.043325(38) 0.96042(14)

0.80 apeNEXT 5k 0.38622(12) 0.035453(54) 1.08808(17)

0.90 apeNEXT 5k 0.35369(17) 0.022487(44) 1.34492(17)

1.00 apeNEXT 5k 0.30183(12) 0.013127(33) 1.57817(15)

1.10 apeNEXT 5k 0.23811(15) 0.006995(26) 1.75856(14)

1.20 apeNEXT 5k 0.17580(20) 0.003483(22) 1.87501(10)

1.50 apeNEXT 5k 0.05762(15) 0.000345(19) 1.98708(12)

1.80 apeNEXT 5k 0.01749(15) 0.000046(10) 1.998941(87)

2.10 apeNEXT 5k 0.00535(14) 0.0000101(81) 1.999779(80)

Table 3: Summary of the simulations at β = 1.45 and real chemical potential, µ̂ = µ̂R.

and real values of µ. The range of values used in the fit is limited on the imaginary

chemical potential side by the presence of the RW transition, so that we included all data

with µ̂I < π/8. For real chemical potentials, we have considered the possible presence

of non-analyticities and have repeated our fits for different values of the maximum real

chemical potential, µ̂max.

We report only results obtained for the Polyakov loop: those obtained for the other two

observables look very similar. We have tried fits with several analytic functions, only a few

of them being exemplified in figure 6, where we report the value of χ2/d.o.f. as a function of

µ̂max. The outcome of our analysis, as evident from figure 6, can be summarized as follows:

acceptable values of χ2/d.o.f. are obtained once sufficiently higher order polynomials or

ratio of polynomials are taken into account, but only if µ̂max is less than about 0.5. Instead

the value of χ2/d.o.f. gets sensibly different from one for larger values of µ̂max → 1,

regardless of the interpolating function.

We interpret this result as a proof that, within statistical errors, data at real and

imaginary chemical potential can indeed be described by one only analytic function, even

if in a limited range. Hints of possible non-analyticities appear for real chemical potentials

µ̂ > 0.5. We believe that the most plausible explanation of them is the onset of saturation

effects.

A comment is in order about the use of higher order polynomials. figure 6 could
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µ̂I machine stat. 〈L〉 〈ψψ〉 =〈nq〉

0. apeNEXT 5k 0.25078(62) 0.20791(43) −0.000013(73)

0. APEmille 5k 0.25058(40) 0.20786(34) 0.00012(22)

0.02 apeNEXT 5k 0.25026(35) 0.20811(37) −0.007369(67)

0.04 apeNEXT 5k 0.24890(39) 0.20925(54) −0.01450(11)

0.05 APE100 1k 0.24811(59) 0.21009(54) −0.01738(42)

0.06 apeNEXT 5k 0.24647(36) 0.21156(41) −0.021307(83)

0.08 apeNEXT 5k 0.24200(43) 0.21543(36) −0.027878(84)

0.10 apeNEXT 5k 0.23764(60) 0.21958(60) −0.033936(80)

0.10 APE100 1k 0.23772(50) 0.21962(74) −0.03346(38)

0.12 apeNEXT 5k 0.23050(47) 0.22575(60) −0.039025(92)

0.14 apeNEXT 5k 0.22363(49) 0.23198(46) −0.04344(14)

0.15 APE100 1k 0.21874(68) 0.23556(65) −0.04552(44)

0.16 apeNEXT 5k 0.21316(63) 0.24050(65) −0.04637(19)

0.18 apeNEXT 5k 0.19988(62) 0.25118(64) −0.04788(15)

0.20 apeNEXT 5k 0.18395(93) 0.26395(79) −0.04787(23)

0.20 APE100 5k 0.18626(61) 0.26207(43) −0.04860(27)

0.22 apeNEXT 5k 0.16675(67) 0.27565(58) −0.04609(22)

0.24 apeNEXT 5k 0.14595(44) 0.28866(36) −0.04245(14)

0.26 apeNEXT 5k 0.1267(12) 0.29949(56) −0.03843(42)

0.28 apeNEXT 5k 0.10607(61) 0.30890(33) −0.03353(17)

0.30 apeNEXT 5k 0.08658(56) 0.31653(30) −0.02789(18)

0.30 APE100 5k 0.08668(60) 0.31639(35) −0.02812(26)

0.32 APEmille 5k 0.06633(92) 0.32255(41) −0.02186(33)

Table 4: Summary of the simulations at β = 1.45 and imaginary chemical potential, µ̂ = iµ̂I .

give the impression that increasing the order of the polynomial sensibly improves the

method of analytic continuation, since a reasonable χ2/d.o.f. is obtained for a wider range.

This could seem to contradict our previous statements about the choice of the optimal

function for extrapolating data from imaginary values of µ, in fact it is not so. Indeed,

one should consider that when trying to extrapolate information to µ2 > 0 having at

disposal only information from negative values of µ2, the use of polynomials in µ2 can result

in instabilities in the determination of the coefficients, since a polynomial with positive

coefficients for µ2 < 0 is continued to a polynomial with alternating coefficients for µ2 > 0

and vice versa. These instabilities clearly disappear if data on both sides are available, but

of course this situation cannot be reproduced for real QCD.

3.2 The intermediate region βc < β < βE

Our findings at β = 1.45 are summarized in figures 7, 8, 9 and table 8. Also in this

case we have used polynomials and ratio of polynomials as interpolating functions for

the data at imaginary µ. Here the discussion goes along the same lines as for β = 1.90

with one important difference: both in the case of polynomials or ratios of polynomials

as interpolating functions, and for any of the three observables considered here, a fit at

imaginary chemical potential with χ2/d.o.f of the order of one is possible only in the interval

[0, µ̄I ], with µ̄I = 0.22 ÷ 0.24. This µ̂I represents the onset of a transition, which shows

up also as a peak in the chiral condensate susceptibility, centered around that value of µ̂I .

The fact that the interval in µ̂I available for numerical simulations is shorter makes the
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µ̂R machine stat. 〈L〉 〈ψψ〉 <〈nq〉

0. apeNEXT 5k 0.12667(23) 0.36575(16) 0.00007(10)

0.05 APEmille 5k 0.12930(30) 0.36421(25) 0.00958(21)

0.10 apeNEXT 4k 0.13810(36) 0.35908(25) 0.02086(11)

0.125 apeNEXT 6k 0.14609(34) 0.35416(20) 0.02819(10)

0.15 apeNEXT 4.95k 0.15507(30) 0.34861(22) 0.03662(12)

0.175 apeNEXT 6k 0.16648(29) 0.34008(25) 0.04707(14)

0.20 apeNEXT 6k 0.18064(55) 0.32928(45) 0.06086(19)

0.225 apeNEXT 5k 0.19691(35) 0.31530(35) 0.07761(17)

0.25 apeNEXT 4.8k 0.21636(46) 0.29575(42) 0.09907(20)

0.275 apeNEXT 6k 0.23737(30) 0.27217(32) 0.12582(18)

0.30 apeNEXT 5.75k 0.25808(41) 0.24655(49) 0.15608(26)

0.35 apeNEXT 5.55k 0.29092(26) 0.20058(37) 0.22323(16)

0.40 apeNEXT 5.3k 0.31534(30) 0.16565(16) 0.29689(16)

0.45 apeNEXT 5.25k 0.33365(18) 0.13838(11) 0.37795(16)

0.50 apeNEXT 7.1k 0.34742(16) 0.115763(67) 0.46749(29)

0.55 apeNEXT 4.8k 0.35841(16) 0.096343(70) 0.56615(21)

0.60 apeNEXT 5.4k 0.36535(18) 0.079910(73) 0.67343(16)

0.65 apeNEXT 5.25k 0.36840(13) 0.065787(51) 0.78824(19)

0.70 apeNEXT 5.4k 0.36749(15) 0.053745(49) 0.90967(16)

0.75 apeNEXT 3.3k 0.36192(18) 0.043309(57) 1.03580(21)

0.80 apeNEXT 6k 0.35154(11) 0.034545(42) 1.16451(15)

0.90 apeNEXT 9k 0.31556(11) 0.020801(39) 1.41737(10)

1.00 apeNEXT 7.95k 0.26293(13) 0.011606(28) 1.63707(18)

1.10 apeNEXT 6k 0.20260(22) 0.006003(34) 1.79870(14)

Table 5: Summary of the simulations at β = 1.30 and real chemical potential, µ̂ = µ̂R.

interpolation, and consequently its continuation, less accurate. Nevertheless, also at this

β, the use of ratio of polynomial performs much better than simple polynomials.

Also in this regime we have performed combined fits using both sets of data at imag-

inary and real values of µ. In this case the range of values used in the fit is limited, on

the imaginary chemical potential side, by the presence of the continuation of the physical

critical line, so that we have included only values µ̂I < 0.20.

Also in this case we report only results obtained for the Polyakov loop with several

fitting functions, as exemplified in figure 10, as a function of µ̂max. Results look very similar

to those obtained for β = 1.90, with a few differences: while the quality of the fits obtained

with the ratio of polynomials does not change with respect to β = 1.90, higher order

polynomials are necessary to obtain reasonable χ2/d.o.f., and hints of non-analyticities

show up generally earlier, as a function of µ̂max, than for β = 1.90. A possible explanation

for the different behaviour could reside in the presence of the physical pseudo-critical line

for imaginary values of µ.

3.3 The low temperature region β < βc

Below βc our observables are smooth functions of µ̂I , with periodicity in µ̂I equal to π/4

in the case of the fermionic number density and of the chiral condensate and equal to

π/2 in the case of the Polyakov loop. This leads naturally to the use of Fourier sums as
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µ̂I machine stat. 〈L〉 〈ψψ〉 =〈nq〉

0. apeNEXT 5k 0.12667(23) 0.36575(16) 0.00007(10)

0.04 apeNEXT 5k 0.12454(25) 0.36652(18) −0.00703(11)

0.08 apeNEXT 5k 0.11980(28) 0.36908(15) −0.013543(93)

0.12 apeNEXT 5k 0.10978(34) 0.37377(20) −0.01802(10)

0.16 apeNEXT 5k 0.09860(26) 0.37829(15) −0.02113(11)

0.20 apeNEXT 5k 0.08489(27) 0.38340(23) −0.02162(18)

0.24 apeNEXT 5k 0.06919(31) 0.38830(11) −0.01977(12)

0.28 apeNEXT 5k 0.05219(29) 0.39221(12) −0.01640(17)

0.32 apeNEXT 5k 0.03386(23) 0.39509(15) −0.01123(14)

0.36 apeNEXT 5k 0.01534(27) 0.39680(14) −0.00523(17)

0.40 apeNEXT 5k −0.00373(36) 0.39718(11) 0.00120(14)

0.44 apeNEXT 5k −0.02215(21) 0.396492(99) 0.00757(15)

0.48 apeNEXT 5k −0.04075(23) 0.39409(14) 0.013311(94)

0.52 apeNEXT 5k −0.05856(25) 0.39085(13) 0.01771(11)

0.56 apeNEXT 5k −0.07539(35) 0.38647(13) 0.02094(10)

0.60 apeNEXT 5k −0.08993(29) 0.38160(14) 0.02146(12)

0.64 apeNEXT 5k −0.10303(26) 0.37660(17) 0.02016(13)

0.68 apeNEXT 5k −0.11435(30) 0.37165(20) 0.016834(91)

0.72 apeNEXT 5k −0.12147(30) 0.36805(21) 0.011327(91)

0.76 apeNEXT 5k −0.12584(34) 0.36612(19) 0.004579(90)

0.80 apeNEXT 5k −0.12630(27) 0.36586(28) −0.002841(88)

Table 6: Summary of the simulations at β = 1.30 and imaginary chemical potential, µ̂ = iµ̂I .

observable function A B C χ2/d.o.f.

=〈nq〉 Eq. (3.3) −0.37746(39) 1.048(12) −0.138(81) 1.11

〈ψψ〉 Eq. (3.1) 0.085780(17) 0.10687(77) 0.0592(61) 0.55

〈L〉 Eq. (3.1) 0.39706(12) −0.3511(57) −0.835(50) 1.06

=〈nq〉 Eq. (3.4) −0.37746(40) 0.997(19) 0.136(80) 1.11

〈ψψ〉 Eq. (3.2) 0.085778(17) 0.0645(49) −0.497(50) 0.58

〈L〉 Eq. (3.2) 0.39713(12) −1.029(30) −1.679(86) 0.62

Table 7: Parameters of the interpolations of imaginary chemical potential data at β = 1.90.

interpolating functions and, in particular,

A + B cos(8µ̂I) + C cos(16µ̂I) (3.5)

for the chiral condensate,

A cos(4µ̂I) + B cos(12µ̂I) (3.6)

for the Polyakov loop and

A sin(8µ̂I) + B sin(16µ̂I) (3.7)

for the fermionic number density, which is odd in µI .

We summarize our results at β = 1.30 in figures 11, 12, 13 and table 9. The functions

chosen for our fits, and reported in eq. (3.5), (3.6) and (3.7), are those containing the

minimum number of terms necessary to obtain a χ2/d.o.f. close to one (the use of less

terms leading to a sensible increase of χ2/d.o.f.). From table 9 it is possible to see that

the coefficients of the secondary harmonic terms in the Fourier sums (3.5), (3.6) and (3.7)
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Figure 15: Susceptibility of the chiral condensate at β = 1.30 for real µ̂.

observable function A B C χ2/d.o.f. µ̄I

=〈nq〉 Eq. (3.3) −0.36670(97) 2.708(93) 11.5(1.8) 0.92 0.22

〈ψψ〉 Eq. (3.1) 0.20752(17) 1.202(22) 3.72(40) 1.16 0.24

〈L〉 Eq. (3.1) 0.25072(18) −1.200(23) −10.76(43) 0.79 0.24

=〈nq〉 Eq. (3.4) −0.36813(79) 3.716(42) −2.20(27) 1.33 0.24

〈ψψ〉 Eq. (3.2) 0.20764(18) 0.42(10) −3.58(39) 0.47 0.22

〈L〉 Eq. (3.2) 0.25083(18) −2.682(55) −5.68(30) 0.74 0.22

Table 8: Parameters of the interpolations of imaginary chemical potential data at β = 1.45. The

last column gives the largest value of µ̂I included in the fit.

observable function A B C χ2/d.o.f.

=〈nq〉 Eq. (3.7) −0.021582(37) −0.000611(35) 1.25

〈ψψ〉 Eq. (3.6) 0.38222(3) −0.015815(46) −0.000769(44) 0.67

〈L〉 Eq. (3.5) 0.12426(8) 0.002238(81) 1.04

Table 9: Parameters of the interpolations of imaginary chemical potential data at β = 1.30.

are suppressed by a factor of a few tens with respect to the coefficients of the dominant

harmonic, thus signaling a quite fast convergence of the Fourier sums. It is interesting to

notice that the term proportional to cos(8µ̂I) does not appear in eq. (3.6), i.e. one term in

the harmonic series for the Polyakov loop seems to be missing. The reason is that in the low

temperature region center symmetry constrains the Polyakov loop to be zero at µ̂I = π/8

(corresponding to the border between the two center sectors), so that all frequencies which

are even multiples of 4µ̂I must be excluded. We have verified that if these frequencies

are included in the interpolating function, the corresponding coefficients are put to zero

by the fit. The Fourier sums become sums of hyperbolic sine and cosine functions after

continuation to real µ, which diverge very rapidly and reproduce only partially the data at

real µ. The deviation between the extrapolation and the data can be taken as an estimate

of the pseudo-critical value of µ̂R. This is confirmed by the study of the chiral condensate

susceptibility, which exhibits a peak centered around that value.
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Alternative attempts with longer Fourier sums or with ratios of Fourier sums did not

change this scenario. In the case of polynomials as interpolating functions, the behavior

is similar to Fourier sums if, however, large order polynomials are used (see blue lines

in figures 11, 12, 13). In this case, the interpolation of data at imaginary µ works in

an interval shorter than that for Fourier sums. These observations confirm that Fourier

sums are indeed the natural functions to be used for the analytic continuation in the low

temperature region.

Regarding the global combined fits using both sets of data at imaginary and real values

of µ, the results of our analysis are reported in figure 14. In this case we report results for

all observables, with the same fitting functions, eq. (3.5), (3.6) and (3.7), used previously.

All data at imaginary chemical potential are taken into account, since no phase transition

at all is expected on that side, while data at real µ are limited to a maximum value µ̂max. It

clearly emerges that, for all observables, both sets of data can be nicely fitted by a common

analytic function, till µ̂max reaches the region where the physical pseudo-critical point is

located; at that point the method of analytic continuation clearly loses any sense. However,

it is quite interesting to notice that the analytic properties of the partition function for

imaginary chemical potentials are not influenced at all by the presence of the pseudo-critical

point at real µ.

An independent determination of the pseudo-critical chemical potential can be ob-

tained by the study of the susceptibility of the chiral condensate for real µ̂, shown in

figure 15. There is an evident peak at µ̂ ' 0.28, in good agreement with the determina-

tions from the χ2 test method.

4. Conclusions and outlook

We have studied the method of analytic continuation in a theory which does not suffer from

the sign problem and have looked for better interpolating functions at imaginary µ, to be

used instead of the polynomial, as has been done in most cases so far in the literature.

We have verified that data at real and imaginary chemical potential can indeed be

well described by common suitable analytic functions, in appropriate ranges, and we have

found that a considerable improvement can be achieved, when extrapolating data from

imaginary to real chemical potentials, if ratios of polynomials (or equivalently Padé ap-

proximants [45]), are used as interpolating functions, if the temperature is larger than the

pseudo-critical one at zero chemical potential. Below that value, instead, Fourier sums

seem to be the best Ansatz, as expected and tested also in other contexts [33, 34].

The deviations from analyticity and between the extrapolated functions and the data

at real chemical potential have different explanations, according to the temperature regime.

Above the temperature of the RW endpoint they arise most likely from unphysical satu-

ration effects, due to the lattice discretization (“Pauli blocking”). In the intermediate

regime, deviations stem also from the limited range of the interval in the imaginary chem-

ical potential for the numerical simulations, which makes the interpolation less easy: this

is caused by the presence of a pseudo-critical point for imaginary values of the chemical

potential, which could also contribute to restrict the range where analytic continuation
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can be applied. Finally, in the low temperature regime, deviations necessarily appear in

correspondence of the transition at real chemical potential.

The lessons we have learned from this study and which could be applied to the physi-

cally interesting case of SU(3) can be summarized as follows:

• above the pseudo-critical temperature, ratio of polynomials should be used as interpo-

lating functions instead of polynomials; their continuation to real chemical potentials

is the more reliable the larger is the interval of imaginary chemical potential where

they succeed in interpolating data;

• below the pseudo-critical temperature, one should surely use Fourier sums: they

nicely reproduce data at imaginary chemical potentials, but are extrapolated to hy-

perbolic functions which rapidly diverge at real chemical potentials; nevertheless,

analytic continuation works fairly well till the pseudo-critical value of the real chem-

ical potential is reached.
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